

On slope unstable Fano varieties

Yen-An Chen

Korea Institute for Advanced Study

Birational Geometry Seminar, February 6th 2026

Slope stability

This is the joint work with Ching-Jui Lai.

Definition

Let A be a nef and big divisor on a normal projective variety X . For any torsion free sheaf \mathcal{E} on X , we define the slope of \mathcal{E} with respect to A as

$\mu_A(\mathcal{E}) = \frac{c_1(\mathcal{E}) \cdot A^{n-1}}{\text{rank}(\mathcal{E})}$. We say \mathcal{E} is A -semistable (resp. A -stable) if $\mu_A(\mathcal{F}) \leq \mu_A(\mathcal{E})$ (resp. $\mu_A(\mathcal{F}) < \mu_A(\mathcal{E})$) for any nonzero proper subsheaf $\mathcal{F} \subset \mathcal{E}$.

We say \mathcal{E} is slope unstable if it is not slope stable.

Motivation

Conjecture (Peternell)

The tangent bundle T_X of a Fano manifold X is $(-K_X)$ -slope unstable only if the relative tangent bundle of a K_X -negative extremal contraction destabilizes it.

Known: $\dim X = 2$ by Fahlaoui and $\dim X = 3$ by Steffens.

Motivation

Conjecture (Peternell)

The tangent bundle T_X of a Fano manifold X is $(-K_X)$ -slope unstable only if the relative tangent bundle of a K_X -negative extremal contraction destabilizes it.

Known: $\dim X = 2$ by Fahlaoui and $\dim X = 3$ by Steffens.

Conjecture (Iskovskikh)

The tangent bundle of a Fano manifold X of Picard rank one is $(-K_X)$ -slope stable.

It holds in $\dim \leq 5$ by Peternell-Wiśniewski and Hwang.

Motivation

Conjecture (Peternell)

The tangent bundle T_X of a Fano manifold X is $(-K_X)$ -slope unstable only if the relative tangent bundle of a K_X -negative extremal contraction destabilizes it.

Known: $\dim X = 2$ by Fahlaoui and $\dim X = 3$ by Steffens.

Conjecture (Iskovskikh)

The tangent bundle of a Fano manifold X of Picard rank one is $(-K_X)$ -slope stable.

It holds in $\dim \leq 5$ by Peternell-Wiśniewski and Hwang.

Kanemitsu gives a counterexample when $\dim X = 14$.

$$\begin{array}{ccc} \mathrm{Bl}_Z X & \xrightarrow{\pi} & X \\ f \downarrow & & \\ Y & & \end{array}$$

Maximal destabilizing sheaf

Let X be a weak \mathbb{Q} -Fano variety.

Assume T_X is not $(-K_X)$ -slope stable.

Then there exists the *maximal destabilizing sheaf* \mathcal{F} .

Maximal destabilizing sheaf

Let X be a weak \mathbb{Q} -Fano variety.

Assume T_X is not $(-K_X)$ -slope stable.

Then there exists the *maximal destabilizing sheaf* \mathcal{F} .

We would like to study unstable Fano variety via maximal destabilizing sheaf \mathcal{F} .

Maximal destabilizing sheaf

Let X be a weak \mathbb{Q} -Fano variety.

Assume T_X is not $(-K_X)$ -slope stable.

Then there exists the *maximal destabilizing sheaf* \mathcal{F} .

We would like to study unstable Fano variety via maximal destabilizing sheaf \mathcal{F} .

Theorem (Campana-Păun, Ou)

\mathcal{F} is an algebraically integrable foliation with rationally connected leaves.

Definition (Foliation)

Let X be a normal variety. A foliation \mathcal{F} of rank r on X is a rank r coherent subsheaf of the tangent sheaf \mathcal{T}_X such that

- ① \mathcal{F} is closed under the Lie bracket and
- ② \mathcal{F} is saturated, that is $\mathcal{T}_X/\mathcal{F}$ is torsion-free.

Remark

- ① By Frobenius' theorem, there are leaves of \mathcal{F} .
- ② \mathcal{F} is uniquely determined on a dense open subset of X .

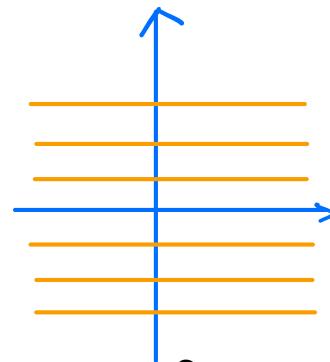
The canonical divisor $K_{\mathcal{F}}$ is defined as $\mathcal{O}(K_{\mathcal{F}}) = \det(\mathcal{F}^*)$.

Examples: Foliations

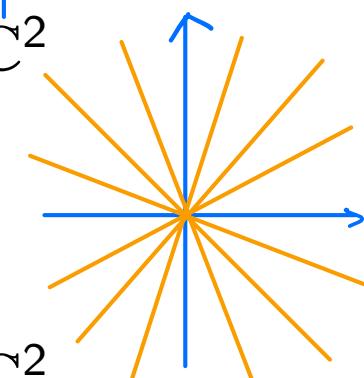
① $f: X \dashrightarrow Y$ a dominant rational map.

Algebraically integrable

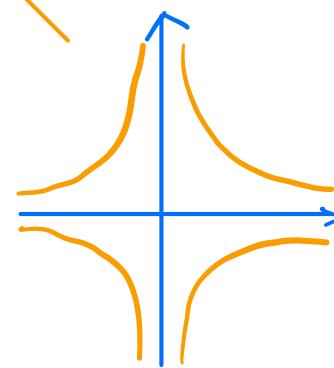
② $v_1 = \frac{\partial}{\partial x}$ on \mathbb{C}^2



③ $v_2 = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ on \mathbb{C}^2



④ $v_3 = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$ on \mathbb{C}^2



Invariance

Let X be a normal variety and \mathcal{F} be a foliation on X .

We say a subvariety $W \subset X$ is invariant under \mathcal{F} if $\mathcal{F}|_W \rightarrow T_X|_W$ factors through T_W .

Invariance

Let X be a normal variety and \mathcal{F} be a foliation on X .

We say a subvariety $W \subset X$ is invariant under \mathcal{F} if $\mathcal{F}|_W \rightarrow T_X|_W$ factors through T_W .

$$\begin{array}{ccc} \mathcal{F}|_W & \longrightarrow & T_X|_W \\ | & & \nearrow \\ | & & \\ \Downarrow & & \\ T_W & & \end{array}$$

Invariance

Let X be a normal variety and \mathcal{F} be a foliation on X .

We say a subvariety $W \subset X$ is invariant under \mathcal{F} if $\mathcal{F}|_W \rightarrow T_X|_W$ factors through T_W .

$$\begin{array}{ccc} \mathcal{F}|_W & \longrightarrow & T_X|_W \\ | & & \nearrow \\ | & & \\ \Downarrow & & \\ T_W & & \end{array}$$

“ W is the union of some leaves”

Foliation singularities

Let $f: Y \rightarrow X$ be a proper birational morphism and \mathcal{F} be a foliation on X . Suppose $K_{\mathcal{F}}$ is \mathbb{Q} -Cartier. For any $E \subset Y$ exceptional over X , we define the foliated discrepancy

$$a(E, \mathcal{F}) := \text{ord}_E(K_{f^*\mathcal{F}} - f^*K_{\mathcal{F}}).$$

Foliation singularities

Let $f: Y \rightarrow X$ be a proper birational morphism and \mathcal{F} be a foliation on X . Suppose $K_{\mathcal{F}}$ is \mathbb{Q} -Cartier. For any $E \subset Y$ exceptional over X , we define the foliated discrepancy

$$a(E, \mathcal{F}) := \text{ord}_E(K_{f^*\mathcal{F}} - f^*K_{\mathcal{F}}).$$

We say

$$x \text{ is } \begin{cases} \text{terminal} & \text{if } a(E, \mathcal{F}) > 0 \\ \text{canonical} & \text{if } a(E, \mathcal{F}) \geq 0 \\ \text{log terminal} & \text{if } a(E, \mathcal{F}) > -\varepsilon(E) \\ \text{log canonical} & \text{if } a(E, \mathcal{F}) \geq -\varepsilon(E) \end{cases}$$

$$(K_{\mathcal{F}} + \varepsilon(E)E)|_E = K_{\mathcal{F}|_E} + \text{Diff.}$$

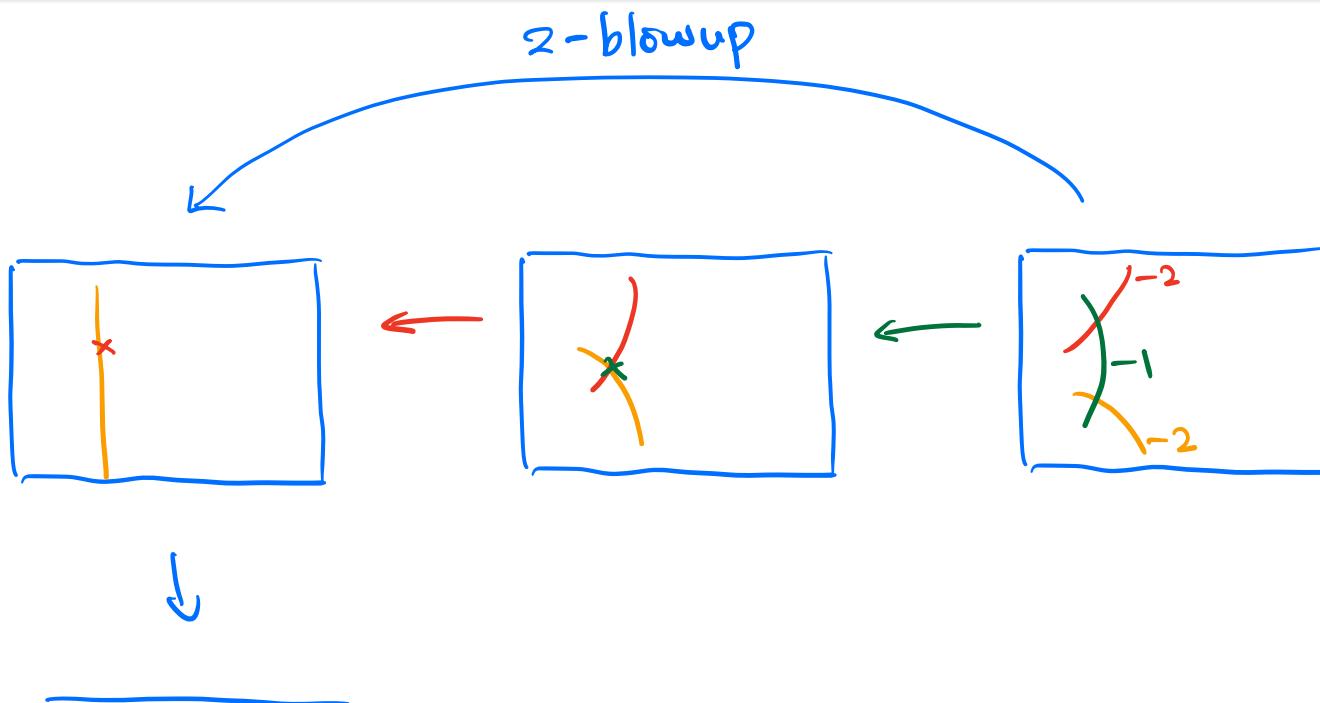
for every divisor E over x

where $\varepsilon(E) = 0$ if E is $f^*\mathcal{F}$ -invariant and $\varepsilon(E) = 1$ if E is not $f^*\mathcal{F}$ -invariant.

Main Theorem

Theorem (C.-Lai)

Let X be a smooth weak del Pezzo surface, that is $-K_X$ is nef and big. If T_X is $(-K_X)$ -slope unstable, then X is obtained from the Hirzebruch surface \mathbb{F}_n with $n \in \{0, 1, 2\}$ by at most three “2-blowups” at general points. Moreover, the maximal destabilizing sheaf is the foliation induced by its canonical morphism to \mathbb{P}^1 .



Main Theorem

Theorem (C.-Lai)

Let X be a smooth weak del Pezzo surface, that is $-K_X$ is nef and big. If T_X is $(-K_X)$ -slope unstable, then X is obtained from the Hirzebruch surface \mathbb{F}_n with $n \in \{0, 1, 2\}$ by at most three “2-blowups” at general points. Moreover, the maximal destabilizing sheaf is the foliation induced by its canonical morphism to \mathbb{P}^1 .

Corollary

Let X be a weak del Pezzo surface with at worst canonical singularities and whose tangent sheaf T_X is $(-K_X)$ -slope unstable. If \mathcal{F} is the maximal destabilizing sheaf, then (X, \mathcal{F}) is induced from its minimal resolution, which is one of the surfaces above.

$$\pi: \tilde{X} \rightarrow X$$

$$K_{\tilde{X}}^2 = K_X^2$$

$$\pi^*K_X = K_{\tilde{X}}$$

$$K_{\tilde{X}} \cdot K_X = K_{\tilde{X}} \cdot K_{\tilde{X}}$$

Proposition

Let X be a weak \mathbb{Q} -Fano variety whose tangent sheaf is $(-K_X)$ -unstable. Suppose \mathcal{F} is the maximal destabilizing sheaf. Then $K_{\mathcal{F}}$ is NOT pseudo-effective.

Idea of Proof

Proposition

Let X be a weak \mathbb{Q} -Fano variety whose tangent sheaf is $(-K_X)$ -unstable. Suppose \mathcal{F} is the maximal destabilizing sheaf. Then $K_{\mathcal{F}}$ is NOT pseudo-effective.

Proof

Suppose not, then $\mu(\mathcal{F}) = \frac{c_1(\mathcal{F}) \cdot (-K_X)^{n-1}}{\text{rank } \mathcal{F}} = \frac{(-K_{\mathcal{F}}) \cdot (-K_X)^{n-1}}{\text{rank } \mathcal{F}} \leq 0$, contradicting to $\mu(\mathcal{F}) \geq \mu(T_X) > 0$.

Idea of Proof

Proposition

Let X be a weak \mathbb{Q} -Fano variety whose tangent sheaf is $(-K_X)$ -unstable. Suppose \mathcal{F} is the maximal destabilizing sheaf. Then $K_{\mathcal{F}}$ is NOT pseudo-effective.

Proof

Suppose not, then $\mu(\mathcal{F}) = \frac{c_1(\mathcal{F}) \cdot (-K_X)^{n-1}}{\text{rank } \mathcal{F}} = \frac{(-K_{\mathcal{F}}) \cdot (-K_X)^{n-1}}{\text{rank } \mathcal{F}} \leq 0$, contradicting to $\mu(\mathcal{F}) \geq \mu(T_X) > 0$.

- ① Run a $K_{\mathcal{F}}$ -MMP. So we have $X \rightarrow X_+$ where $X_+ \rightarrow Z_+$ is a Mori fiber space.

Idea of Proof

Proposition

Let X be a weak \mathbb{Q} -Fano variety whose tangent sheaf is $(-K_X)$ -unstable. Suppose \mathcal{F} is the maximal destabilizing sheaf. Then $K_{\mathcal{F}}$ is NOT pseudo-effective.

Proof

Suppose not, then $\mu(\mathcal{F}) = \frac{c_1(\mathcal{F}) \cdot (-K_X)^{n-1}}{\text{rank } \mathcal{F}} = \frac{(-K_{\mathcal{F}}) \cdot (-K_X)^{n-1}}{\text{rank } \mathcal{F}} \leq 0$, contradicting to $\mu(\mathcal{F}) \geq \mu(T_X) > 0$.

- ① Run a $K_{\mathcal{F}}$ -MMP. So we have $X \rightarrow X_+$ where $X_+ \rightarrow Z_+$ is a Mori fiber space.
- ② $\dim Z_+ = 1$: Classification.

Idea of Proof

Proposition

Let X be a weak \mathbb{Q} -Fano variety whose tangent sheaf is $(-K_X)$ -unstable. Suppose \mathcal{F} is the maximal destabilizing sheaf. Then $K_{\mathcal{F}}$ is NOT pseudo-effective.

Proof

Suppose not, then $\mu(\mathcal{F}) = \frac{c_1(\mathcal{F}) \cdot (-K_X)^{n-1}}{\text{rank } \mathcal{F}} = \frac{(-K_{\mathcal{F}}) \cdot (-K_X)^{n-1}}{\text{rank } \mathcal{F}} \leq 0$, contradicting to $\mu(\mathcal{F}) \geq \mu(T_X) > 0$.

- ① Run a $K_{\mathcal{F}}$ -MMP. So we have $X \rightarrow X_+$ where $X_+ \rightarrow Z_+$ is a Mori fiber space.
- ② $\dim Z_+ = 1$: Classification.
- ③ $\dim Z_+ = 0$: Non-existence.

$K_{\mathcal{F}}$ -MMP

A priori, \mathcal{F} is not log canonical.

$K_{\mathcal{F}}$ -MMP

A priori, \mathcal{F} is not log canonical.

As X is a Mori dream space, we can run D -MMP for any Weil divisor D .

A priori, \mathcal{F} is not log canonical.

As X is a Mori dream space, we can run D -MMP for any Weil divisor D .

Proposition

Let X be a normal \mathbb{Q} -factorial surface and \mathcal{F} be a foliation on X . If $\varphi: X \rightarrow Y$ is a morphism contracting a $K_{\mathcal{F}}$ -negative extremal curve C , then C is \mathcal{F} -invariant.

A priori, \mathcal{F} is not log canonical.

As X is a Mori dream space, we can run D -MMP for any Weil divisor D .

Proposition

Let X be a normal \mathbb{Q} -factorial surface and \mathcal{F} be a foliation on X . If $\varphi: X \rightarrow Y$ is a morphism contracting a $K_{\mathcal{F}}$ -negative extremal curve C , then C is \mathcal{F} -invariant.

Proof

Suppose not.

$$0 > (K_{\mathcal{F}} + C) \cdot C = \deg(K_{\mathcal{F}_C} + \text{Diff}(\mathcal{F}, 0)) = \deg \text{Diff}(\mathcal{F}, 0) \geq 0,$$

which is impossible.

$\dim Z_+ = 1$: Classification

$$\begin{array}{ccc} \varphi_+ : X & \longrightarrow & Y_+ \\ & & f_+ \downarrow K_{\mathcal{F}}\text{-Mfs} \\ & & Z_+ \end{array}$$

$\dim Z_+ = 1$: Classification

$$\begin{array}{ccc} \varphi_+ : X & \longrightarrow & Y_+ \\ & & f_+ \downarrow K_{\mathcal{F}}\text{-Mfs} \\ & & \mathbb{P}^1 \end{array}$$

$\dim Z_+ = 1$: Classification

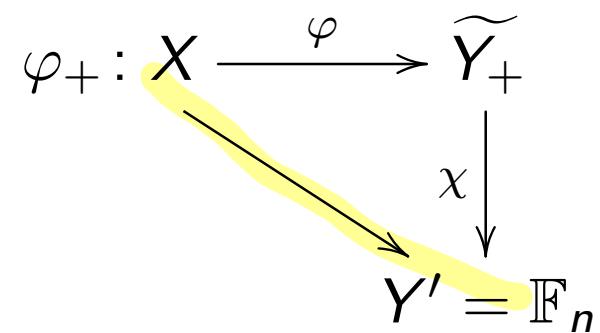
$$\begin{array}{ccccc} & & \text{minimal resolution} & & \\ & & \downarrow & & \\ \varphi_+: X & \xrightarrow{\varphi} & \widetilde{Y}_+ & \xrightarrow{\varphi'} & Y_+ \\ & & \searrow & & \downarrow f_+ \text{---} K_{\mathcal{F}}\text{-Mfs} \\ & & & & \mathbb{P}^1 \end{array}$$

$\dim Z_+ = 1$: Classification

$$\varphi_+ : X \xrightarrow{\varphi} \widetilde{Y}_+ \xrightarrow{\varphi'} Y_+$$
$$Y' = \mathbb{F}_n \xrightarrow{\pi} \mathbb{P}^1$$

$\chi \downarrow$ $f_+ \downarrow K_{\mathcal{F}}\text{-Mfs}$

$\dim Z_+ = 1$: Classification

$$\varphi_+ : X \xrightarrow{\varphi} \widetilde{Y}_+$$

$$\chi \downarrow$$
$$Y' = \mathbb{F}_n$$

$\dim Z_+ = 1$: Classification (Cont'd)

$X = X_m \rightarrow X_{m-1} \rightarrow \dots \rightarrow X_0 = \mathbb{F}_n \quad \text{with } m \geq 0 \text{ and } n = 0, 1, 2$

$\dim Z_+ = 1$: Classification (Cont'd)

$X = X_m \rightarrow X_{m-1} \rightarrow \dots \rightarrow X_0 = \mathbb{F}_n \quad \text{with } m \geq 0 \text{ and } n = 0, 1, 2$

- ① For $m = 0$, we have $X = \mathbb{F}_n$, $\mathcal{F} = T_{\mathbb{F}_n/\mathbb{P}^1}$, and $\mu(\mathcal{F}) = 4 = \mu(T_X)$.

$\dim Z_+ = 1$: Classification (Cont'd)

$X = X_m \rightarrow X_{m-1} \rightarrow \dots \rightarrow X_0 = \mathbb{F}_n$ with $m \geq 0$ and $n = 0, 1, 2$

- ① For $m = 0$, we have $X = \mathbb{F}_n$, $\mathcal{F} = T_{\mathbb{F}_n/\mathbb{P}^1}$, and $\mu(\mathcal{F}) = 4 = \mu(T_X)$.
- ② Now we assume $m > 0$. Let $N_i = 2K_{\mathcal{F}_i} \cdot K_{X_i} - K_{X_i}^2$ for $0 \leq i \leq m$. Note that $N_0 = 0$ and $N_m \geq 0$ by assumption.

$$2(\mu(T_n) - \mu(T_{X_n}))$$

$\dim Z_+ = 1$: Classification (Cont'd)

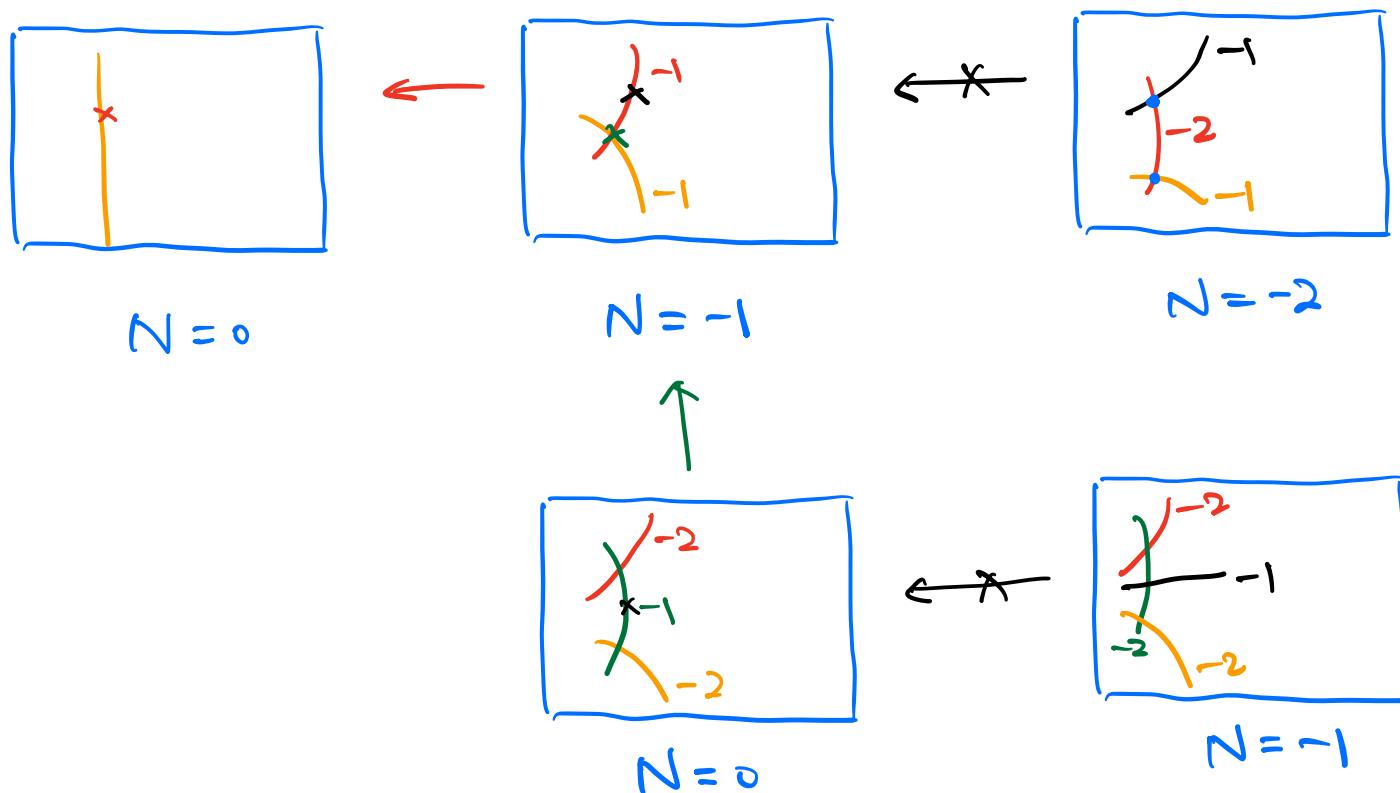
$X = X_m \rightarrow X_{m-1} \rightarrow \dots \rightarrow X_0 = \mathbb{F}_n$ with $m \geq 0$ and $n = 0, 1, 2$

- ① For $m = 0$, we have $X = \mathbb{F}_n$, $\mathcal{F} = T_{\mathbb{F}_n/\mathbb{P}^1}$, and $\mu(\mathcal{F}) = 4 = \mu(T_X)$.
- ② Now we assume $m > 0$. Let $N_i = 2K_{\mathcal{F}_i} \cdot K_{X_i} - K_{X_i}^2$ for $0 \leq i \leq m$. Note that $N_0 = 0$ and $N_m \geq 0$ by assumption.

Lemma

$$N_{i+1} = \begin{cases} N_i - 1 & \text{if } x \notin \text{Sing } \mathcal{F} \\ N_i + 1 & \text{if } x \in \text{Sing } \mathcal{F} \end{cases}$$

$\dim Z_+ = 1$: Classification (Cont'd)



Each 2-blowup decrease K_X^2 by 2.

As $K_{\mathbb{F}_n}^2 = 8$, we can have at most 3 2-blowups.

$\dim Z_+ = 0$: Non-existence

$$X \rightarrow Y_+ \quad c(Y_+) = 1 \quad [\text{TAD}]$$

$-K_{Y_+}$ ample

Theorem (Ambro-Cascini-Shokurov-Spicer)

Let X be a normal variety and \mathcal{F} be an algebraically integrable foliation. Then there exists a modification of \mathcal{F} , that is a birational morphism $\pi: W \rightarrow X$ such that

- ① W is \mathbb{Q} -factorial and klt,
- ② $\mathcal{G} := \pi^{-1}\mathcal{F}$ is induced by an equi-dimensional morphism $g: W \rightarrow Z$ over a smooth variety Z .
- ③ $(\mathcal{G}, \sum \varepsilon(E)E)$ is log canonical where the sum is over all π -exceptional prime divisors.
- ④ $K_{\mathcal{G}} + \sum \varepsilon(E)E + G = \pi^*K_{\mathcal{F}}$ for some effective and π -exceptional divisor G .

$$\begin{matrix} W & \xrightarrow{\pi} & X \\ & \downarrow g & \\ & Z & \end{matrix}$$

$\dim Z_+ = 0$: Non-existence (Cont'd)

Theorem (C.-Lai)

\mathcal{F}_+ is a Fano toric foliation on a toric variety Y_+ with at worst canonical singularities, of $\rho(Y_+) = 1$, and $|\text{Sing}(Y_+)| \leq 2$.

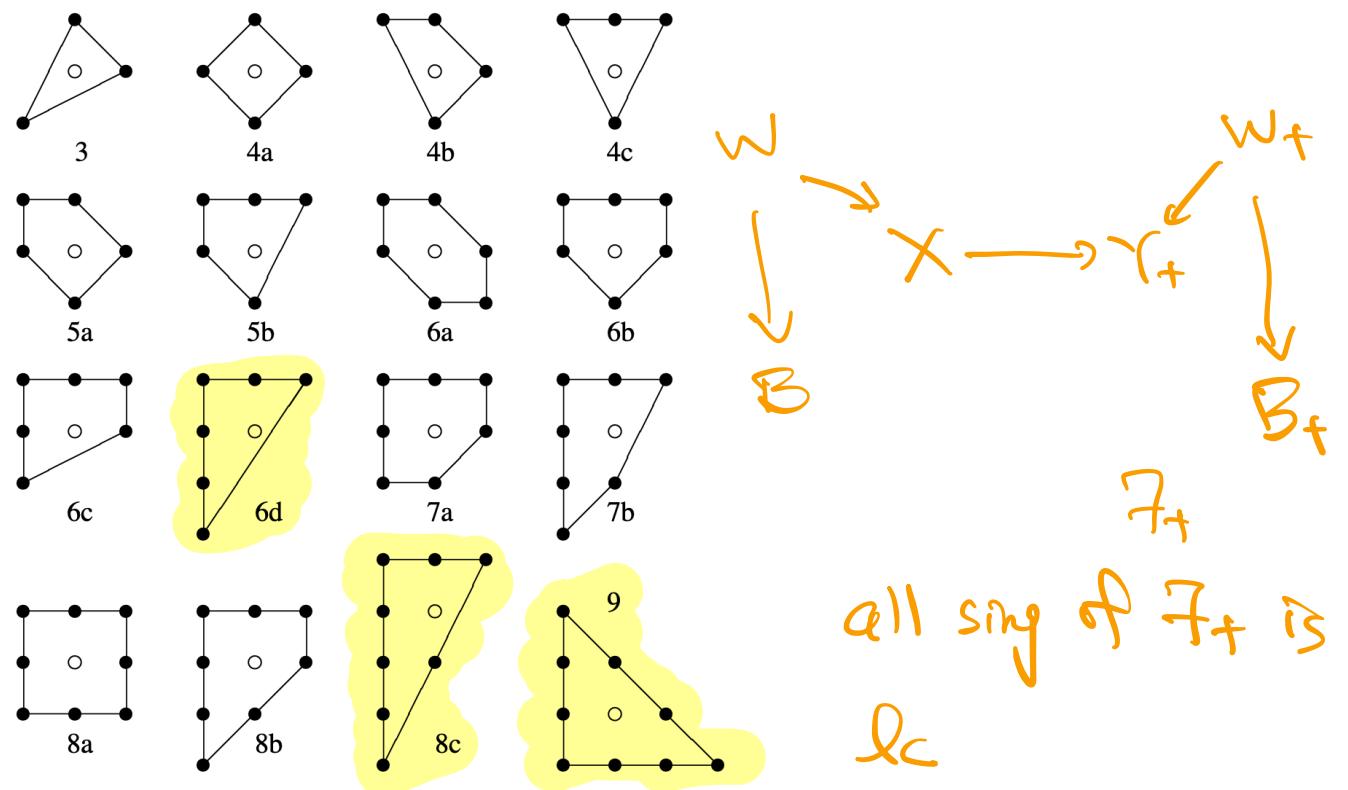


Figure 2. The 16 equivalence classes of reflexive lattice polygons in \mathbb{R}^2

$\dim Z_+ = 0$: Non-existence (Case 9)

Case 9: $Y_+ = \mathbb{P}^2$ and \mathcal{F}_+ is the radial foliation.

$\dim Z_+ = 0$: Non-existence (Case 9)

Case 9: $Y_+ = \mathbb{P}^2$ and \mathcal{F}_+ is the radial foliation.

$$\begin{array}{ccc} \mathrm{Bl}_p \mathbb{P}^2 & \longrightarrow & \mathbb{P}^2 \ni p \\ \downarrow & & \\ \mathbb{P}^1 & & \end{array}$$

$\dim Z_+ = 0$: Non-existence (Case 9)

Case 9: $Y_+ = \mathbb{P}^2$ and \mathcal{F}_+ is the radial foliation.

$$\begin{array}{ccc} \mathrm{Bl}_p \mathbb{P}^2 & \longrightarrow & \mathbb{P}^2 \ni p \\ \downarrow & & \\ \mathbb{P}^1 & & \end{array}$$

Recall $K_{\mathcal{F}}$ -MMP $\varphi_+: X \rightarrow \mathbb{P}^2$.

$\dim Z_+ = 0$: Non-existence (Case 9)

Case 9: $Y_+ = \mathbb{P}^2$ and \mathcal{F}_+ is the radial foliation.

$$\begin{array}{ccc} \text{Bl}_p \mathbb{P}^2 & \longrightarrow & \mathbb{P}^2 \ni p \\ \downarrow & & \\ \mathbb{P}^1 & & \end{array}$$

Recall $K_{\mathcal{F}}$ -MMP $\varphi_+: X \rightarrow \mathbb{P}^2$. $\varphi_+: X = X_m \rightarrow X_{m-1} \rightarrow \dots \rightarrow X_0 = \mathbb{P}^2$.

$\dim Z_+ = 0$: Non-existence (Case 9)

Case 9: $Y_+ = \mathbb{P}^2$ and \mathcal{F}_+ is the radial foliation.

$$\begin{array}{ccc} \text{Bl}_p \mathbb{P}^2 & \longrightarrow & \mathbb{P}^2 \ni p \\ \downarrow & & \\ \mathbb{P}^1 & & \end{array}$$

Recall $K_{\mathcal{F}}$ -MMP $\varphi_+: X \rightarrow \mathbb{P}^2$. $\varphi_+: X = X_m \rightarrow X_{m-1} \rightarrow \dots \rightarrow X_0 = \mathbb{P}^2$.
 $N_i := 2K_{\mathcal{F}_i} \cdot K_{X_i} - K_{X_i}^2$,

$\dim Z_+ = 0$: Non-existence (Case 9)

Case 9: $Y_+ = \mathbb{P}^2$ and \mathcal{F}_+ is the radial foliation.

$$\begin{array}{ccc} \text{Bl}_p \mathbb{P}^2 & \longrightarrow & \mathbb{P}^2 \ni p \\ \downarrow & & \\ \mathbb{P}^1 & & \end{array}$$

Recall $K_{\mathcal{F}}$ -MMP $\varphi_+: X \rightarrow \mathbb{P}^2$. $\varphi_+: X = X_m \rightarrow X_{m-1} \rightarrow \dots \rightarrow X_0 = \mathbb{P}^2$.
 $N_i := 2K_{\mathcal{F}_i} \cdot K_{X_i} - K_{X_i}^2$, $N_0 = -3$, and $N_m \geq 0$.

$(-1) \ (-3) \ \backslash (-3)^2$

$\dim Z_+ = 0$: Non-existence (Case 9)

Case 9: $Y_+ = \mathbb{P}^2$ and \mathcal{F}_+ is the radial foliation.

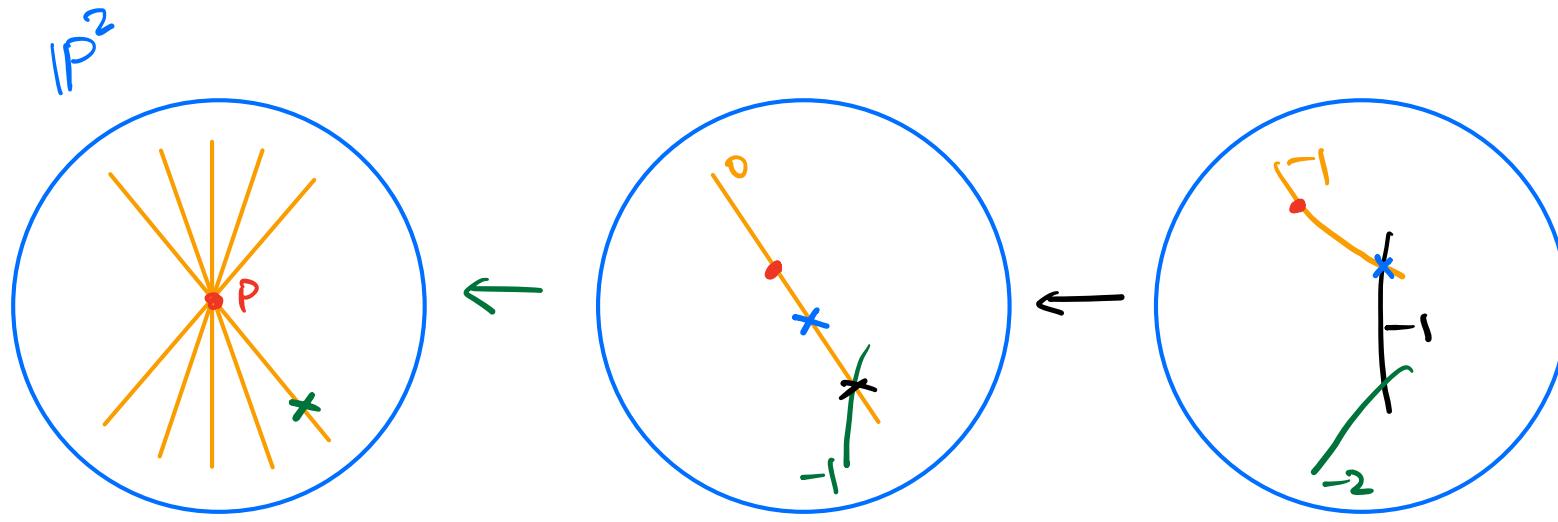
$$\begin{array}{ccc} \text{Bl}_p \mathbb{P}^2 & \longrightarrow & \mathbb{P}^2 \ni p \\ \downarrow & & \\ \mathbb{P}^1 & & \end{array}$$

Recall $K_{\mathcal{F}}$ -MMP $\varphi_+: X \rightarrow \mathbb{P}^2$. $\varphi_+: X = X_m \rightarrow X_{m-1} \rightarrow \dots \rightarrow X_0 = \mathbb{P}^2$. $N_i := 2K_{\mathcal{F}_i} \cdot K_{X_i} - K_{X_i}^2$, $N_0 = -3$, and $N_m \geq 0$.

Lemma

There is no φ_+ -exceptional divisor over p .

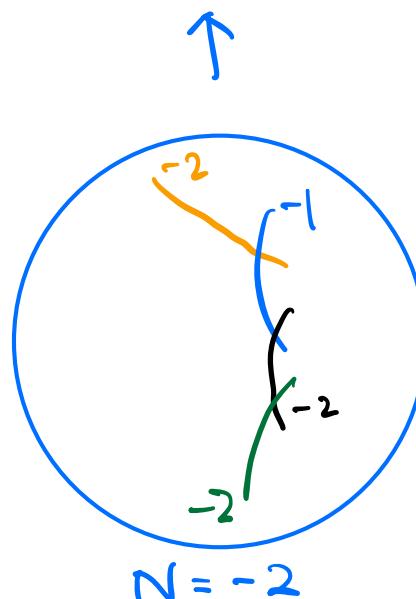
$\dim Z_+ = 0$: Non-existence (Cont'd)



3 blowups increase N by 1.

We need 9 blowups to
achieve $N=0$.

However. $K_x^2 = K_{\mathbb{P}^2}^2 - 9 = 0$



8c

Diagram showing a red line and a green circle. The red line passes through the points $(-2, 1)$, $(0, -1)$, and $(1, 0)$. The green circle is centered on the red line at $(1, 0)$ and passes through $(0, -1)$.

$T \hookrightarrow \mathcal{W} \subset \mathcal{N}_A$

Thank you.

A hand-drawn diagram illustrating wave diffraction. A vertical blue line represents an obstacle. A red wavefront approaches from the top left, hits the obstacle, and is deflected downwards. A blue circle, labeled "radio 1", represents a receiver located to the right of the obstacle. A blue line extends from the obstacle to the receiver, representing the path of the diffracted wave. A yellow arrow points to the right, indicating the direction of wave propagation. The diagram shows how waves spread out around obstacles.